Development of phytocosmeceutical microemulgel containing flaxseed extract and its in vitro and in vivo characterization
- authored by
- Rabia Tasneem, Haji Muhammad Shoaib Khan, Fatima Rasool, Kashif-ur-Rehman Khan, Muhammad Umair, Tuba Esatbeyoglu, Sameh A. Korma
- Abstract
Antioxidants from natural sources are extensively attaining consideration to avert the skin from damage and aging caused by free radicals. Flaxseed (Linum usitatissimum L.), a natural therapeutic agent, was meant to be explored cosmeceutical by quantifying its potential phytoconstituents and to be incorporated into a microemulgel for topical use. Hydroalcoholic fractions (both methanolic and ethanolic; 80%) flaxseed extracts were subjected to phytochemical screening by quantifying total phenolic content (TPC), total flavonoid content (TFC), and high-performance liquid chromatography-ultraviolet (HPLC-UV), and for biological activities through 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, tyrosinase inhibition assay, and sun protection factor (SPF). Ethanolic fraction was selected for further study by TPC (18.75 mg gallic acid equivalent/g) and TFC (1.34 mg quercetin equivalent/g). HPLC-UV analysis showed the existence of benzoic, quercetin, caffeic, vanillic, p-coumaric, gallic, cinnamic, syringic, and sinapic acids. Biological activities showed 87.00%, 72.00%, and 21.75 values for DPPH assay, tyrosinase inhibition, and SPF assays, respectively. An oil-in-water (OW) microemulsion containing the flaxseed extract, with 99.20 nm Zeta size, −19.3 Zeta potential and 0.434 polydispersity index was developed and incorporated in Carbopol-940 gel matrix to formulate an active microemulgel with 59.15% release in in vitro studies. The successfully formulated stable active microemulgel produced statistically significant effects (p < 0.05), in comparison to a placebo, on skin erythema, melanin, sebum, moisture, and elasticity, in a noninvasive in vivo study performed on 13 healthy human female volunteers. Other cosmeceutical products can also be formulated from flaxseed, making it a considerable candidate for further utilization in the pharmaceutical industry.
- Organisation(s)
-
Institute of Food Science and Human Nutrition
Molecular Food Chemistry and Food Development
- External Organisation(s)
-
The Islamia University of Bahawalpur
University of the Punjab
Shenzhen University
Zagazig University
- Type
- Article
- Journal
- Pharmaceutics
- Volume
- 14
- Publication date
- 09.08.2022
- Publication status
- Published
- Peer reviewed
- Yes
- ASJC Scopus subject areas
- Pharmaceutical Science
- Sustainable Development Goals
- SDG 3 - Good Health and Well-being
- Electronic version(s)
-
https://doi.org/10.3390/pharmaceutics14081656 (Access:
Open)